sábado, 6 de febrero de 2010

Lattice mechanics

Consider a rigid regular (or "crystalline"; not amorphous) lattice composed of N particles. (We will refer to these particles as "atoms". In a real solid these atoms may be ions.) N is some large number, say around 1023 (on the order of Avogadro's number) for a typical piece of solid. If the lattice is rigid, the atoms must be exerting forces on one another, so as to keep each atom near its equilibrium position. In real solids, these forces include Van der Waals forces, covalent bonds, and so forth, all of which are ultimately due to the electric force; magnetic and gravitational forces are generally negligible. The forces between each pair of atoms may be characterized by some potential energy function V, depending on the separation of the atoms. The potential energy of the entire lattice is the sum of all the pairwise potential energies:[3]



where is the position of the th atom, and is the potential energy between two atoms.
It is extremely difficult to solve this many-body problem in full generality, in either classical or quantum mechanics. In order to simplify the task, we introduce two important approximations. First, we perform the sum over neighboring atoms only. Although the electric forces in real solids extend to infinity, this approximation is nevertheless valid because the fields produced by distant atoms are screened. Secondly, we treat the potentials as harmonic potentials: this is permissible as long as the atoms remain close to their equilibrium positions. (Formally, this is done by Taylor expanding about its equilibrium value, which gives proportional to .)

The resulting lattice may be visualized as a system of balls connected by springs. The following figure shows a cubic lattice, which is a good model for many types of crystalline solid. Other lattices include a linear chain, which is a very simple lattice which we will shortly use for modelling phonons. Other common lattices may be found in the article on crystal structure.



The potential energy of the lattice may now be written as



Here, is the natural frequency of the harmonic potentials, which we assume to be the same since the lattice is regular. is the position coordinate of the th atom, which we now measure from its equilibrium position. The sum over nearest neighbors is denoted as "(nn)".

Lattice waves



Due to the connections between atoms, the displacement of one or more atoms from their equilibrium positions will give rise to a set of vibration waves propagating through the lattice. One such wave is shown in the figure to the right. The amplitude of the wave is given by the displacements of the atoms from their equilibrium positions. The wavelength is marked.
There is a minimum possible wavelength, given by the equilibrium separation a between atoms. As we shall see in the following sections, any wavelength shorter than this can be mapped onto a wavelength longer than a, due to effects similar to that in aliasing.
Not every possible lattice vibration has a well-defined wavelength and frequency. However, the normal modes (which, as we mentioned in the introduction, are the elementary building-blocks of lattice vibrations) do possess well-defined wavelengths and frequencies. We will now examine it in detail.

Kevin M Contreras H
Electrónica del Estado Sólido

http://en.wikipedia.org/wiki/Phonon







Elige un juego de Messenger. Reta a un amigo. ¡Pruébalo ya!

No hay comentarios:

Publicar un comentario